lunes, 27 de agosto de 2012

FISICA 125-130


Formulación covariante

Clásicamente, al fijar un sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero al tener a un observador con movimiento relativo respecto al sistema de referencia, éste medirá efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan como magnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.11
Así, la expresión para el campo electromagnético es:

Y las expresiones covariantes para las ecuaciones de Maxwell (7) y la fuerza de Lorentz (6) se reducen a:
(6)
(7) 

Electrodinámica cuántica

Diagrama de Feynman mostrando la fuerza electromagnética entre dos electrones por medio del intercambio de un fotón virtual.
Posteriormente a la revolución cuántica de inicios del siglo XX, los físicos se vieron forzados a buscar una teoría cuántica de la interacción electromagnética. El trabajo de Einstein con el efecto fotoeléctrico y la posterior formulación de la mecánica cuántica sugerían que la interacción electromagnética se producía mediante el intercambio de partículas elementales llamadas fotones. La nueva formulación cuántica lograda en la década de los años 40 del siglo XX describía la interacción de este fotón portador de fuerza y las otras partículasportadoras de materia.12
La electrodinámica cuántica es principalmente una teoría cuántica de campos renormalizada. Su desarrollo fue obra de Sinitiro Tomonaga, Julian Schwinger, Richard Feynman y Freeman Dyson alrededor de los años 1947 a 1949.13 En la electrodinámica cuántica, la interacción entre partículas viene descrita por un lagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinámica cuántica, el campo de gauge donde las partículas interactúan es el campo electromagnético y esas partículas son los fotones.13
Matemáticamente, el lagrangiano para la interacción entre fermiones mediante intercambio de fotones viene dado por:

Donde el significado de los términos son:
 son las matrices de Dirac.
 y  son los campos o espinores de Dirac que representan las partículas cargadas eléctricamente.
 es la derivada covariante asociada a la simetría gauge.
 el operador asociado al potencial vector covariante del campo electromagnético y
 el operador de campo asociado tensor de campo electromagnético.

Principio de Arquímedes

Ejemplo del Principio de Arquímedes: El volumen adicional en la segunda probeta corresponde al volumen desplazado por el sólido sumergido (que naturalmente coincide con el volumen del sólido).
El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza1 recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newtons (en el SIU). El principio de Arquímedes se formula así:

Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo,g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales2 y descrito de modo simplificado3 ) actúa verticalmente hacia arriba y está aplicado en elcentro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.

Historia

La anécdota más conocida sobre Arquímedes, matemático griego, cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular. De acuerdo a Vitruvio, arquitecto de la antigua Roma, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II,tirano gobernador de Siracusa, el cual le pidió a Arquímedes determinar si la corona estaba hecha de oro sólido o si un orfebre deshonesto le había agregado plata.4 Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.
Mientras tomaba un baño, notó que el nivel de agua subía en la tina cuando entraba, y así se dio cuenta de que ese efecto podría usarse para determinar el volumen de la corona. Debido a que la compresión del agua sería despreciable,5 la corona, al ser sumergida, desplazaría una cantidad de agua igual a su propio volumen. Al dividir la masa de la corona por el volumen de agua desplazada, se podría obtener la densidad de la corona. La densidad de la corona sería menor si otros metales más baratos y menos densos le hubieran sido añadidos. Entonces, Arquímedes salió corriendo desnudo por las calles, tan emocionado estaba por su descubrimiento para recordar vestirse, gritando "¡Eureka!" (en griego antiguo: "εὕρηκα" que significa "¡Lo he encontrado!)"6
La historia de la corona dorada no aparece en los trabajos conocidos de Arquímedes, pero en su tratado Sobre los cuerpos flotantes él da el principio de hidrostática conocido como el principio de Arquímedes. Este plantea que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso del volumen de fluido desalojado es decir dos cuerpos que se sumergen en una superficie (ej:agua), y el más denso o el que tenga compuestos más pesados se sumerge más rápido, es decir, tarda menos tiempo, aunque es igual la distancia por la cantidad de volumen que tenga cada cuerpo sumergido.7

Demostración

Aunque el principio de Arquímedes fue introducido como principio, de hecho puede considerarse un teorema demostrable a partir de las ecuaciones de Navier-Stokes para un fluido en reposo, mediante el teorema de Stokes (igualmente el principio de Arquímedes puede deducirse matemáticamente de las ecuaciones de Euler para un fluido en reposo que a su vez pueden deducirse generalizando las leyes de Newton a un medio continuo). Partiendo de las ecuaciones de Navier-Stokes para un fluido:
(1)
La condición de que el fluido incompresible que esté en reposo implica tomar en la ecuación anterior , lo que permite llegar a la relación fundamental entre presión del fluido, densidad del fluido y aceleración de la gravedad:
(2)
A partir de esa relación podemos reescribir fácilmente las fuerzas sobre un cuerpo sumergido en términos del peso del fluido desalojado por el cuerpo. Cuando se sumerge un sólido K en un fluido, en cada punto de su superficie aparece una fuerza por unidad de superfice  perpendicular a la superficie en ese punto y proporcional a la presión del fluido p en ese punto. Si llamamos  al vector normal a la superficie del cuerpo podemos escribir la resultante de las fuerzas  sencillamente mediante el teorema de Stokes de la divergencia:
(3)


Donde la última igualdad se da sólo si el fluido es incompresible.

Prisma recto

Para un prisma recto de base Ab y altura H, sumergido en posición totalmente vertical, la demostración anterior es realmente elemental. Por la configuración del prisma dentro del fluido las presiones sobre el área lateral sólo producen empujes horizontales que además se anulan entre sí y no contribuyen a sustentarlo. Para las caras superior e inferior, puesto que todos sus puntos están sumergidos a la misma profundidad, la presión es constante y podemos usar la relación Fuerza = presión x Área y teniendo en cuenta la resultante sobre la cara superior e inferior, tenemos:
(4)
Donde  es la presión aplicada sobre la cara inferior del cuerpo,  es la presión aplicada sobre la cara superior y A es el área proyectada del cuerpo. Teniendo en cuenta la ecuación general de la hidrostática, que establece que la presión en un fluido en reposo aumenta proporcionalmente con la profundidad:
(5)
Introduciendo en el último término el volumen del cuerpo y multiplicando por la densidad del fluido ρf vemos que la fuerza vertical ascendente FV es precisamente el peso del fluido desalojado.
(6)
El empuje o fuerza que ejerce el líquido sobre un cuerpo, en forma vertical y ascendente, cuando éste se halla sumergido, resulta ser también la diferencia entre el peso que tiene el cuerpo suspendido en el aire y el "peso" que tiene el mismo cuando se lo introduce en un líquido. A éste último se lo conoce como peso "aparente" del cuerpo, pues su peso en el líquido disminuye "aparentemente"; la fuerza que ejerce la Tierra sobre el cuerpo permanece constante, pero el cuerpo, a su vez, recibe una fuerza hacia arriba que disminuye la resultante vertical.

Ley de Boyle-Mariotte

La Ley de Boyle-Mariotte (o Ley de Boyle), formulada por Robert Boyle y Edme Mariotte, es una de las leyes de los gases ideales que relaciona el volumen y la presión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que el volumen es inversamente proporcional a la presión:

donde  es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante  para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

donde:





Además si despejamos cualquier incógnita se obtiene lo siguiente:




Esta ley es una simplificación de la ley de los gases ideales o perfectos particularizada para procesos isotermos de una cierta masa de gas constante.
Junto con la ley de Charles, la ley de Gay-Lussac, la ley de Avogadro y la ley de Graham, la ley de Boyle forma las leyes de los gases, que describen la conducta de un gas ideal. Las tres primeras leyes pueden ser generalizadas en la ecuación universal de los gases.

Experimento de Boyle

Para poder comprobar su teoría, Boyle hizo el siguiente experimento: Introdujo un gas en un cilindro con un émbolo y comprobó las distintas presiones al bajar el bolo. A continuación hay una tabla que muestra algunos de los resultados que obtuvo este fenomeno:

No hay comentarios:

Publicar un comentario