lunes, 27 de agosto de 2012

FISICA 125-130




Vector
Este artículo trata sobre el concepto físico de vector. Para el tratamiento matemático formal, véase Espacio vectorial.
En física, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizada para representar una magnitud física definida por su módulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo).1 2 3
En matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación (ver Espacio vectorial).
Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano \R^2 o en el espacio \R^3.
Son ejemplos de magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.

Conceptos fundamentales

Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, los componentes de un vector, la notación de los mismos, etc.

Definición


Componentes de un vector.
Se llama vector de dimensión  a una tupla de  números reales (que se llaman componentes del vector). El conjunto de todos los vectores dedimensión  se representa como  (formado mediante el producto cartesiano).
Así, un vector  perteneciente a un espacio  se representa como:
(left), donde 
Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional ó bidimensional ).
Un vector fijo del plano es un segmento orientado, en el que hay que distinguir tres características:1 2 3
§                    módulo: la longitud del segmento
§                    dirección: la orientación de la recta
§                    sentido: indica cual es el origen y cual es el extremo final de la recta
En inglés, la palabra "direction" indica tanto la dirección como el sentido del vector, con lo que se define el vector con solo dos características: módulo y dirección.4
Los vectores fijos del plano se denotan con dos letras mayúsculas, por ejemplo , que indican su origen y extremo respectivamente.

Magnitudes escalares y vectoriales


Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
Representación de los vectores.
Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, lafuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.
Las magnitudes escalares quedan representadas por el ente matemático más simple; por un número. Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido.

Notación

Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar).
Ejemplos
§                     ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector:  ...
§                    En los textos manuscritos se escribe: ... para los vectores y ... o ... para los módulos.
Cuando convenga, se representan la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, se designan los vectores representados en la Figura 2 en la forma , ... resultando muy útil esta notación para los vectores que representan el desplazamiento.
Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo .

Clasificación de vectores

Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:
§                    Vectores libres: no están aplicados en ningún punto en particular.
§                    Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
§                    Vectores fijos o ligados: están aplicados en un punto en particular.
Podemos referirnos también a:
§                    Vectores unitarios: vectores de módulo unidad.
§                    Vectores concurrentes o angulares: son aquellas cuyas direcciones o líneas de acción pasan por un mismo punto. También se les suele llamar angulares por que forman un ángulo entre ellas.
§                    Vectores opuestos: vectores de igual magnitud y dirección, pero sentidos contrarios.1 En inglés se dice que son de igual magnitud pero direcciones contrarias, ya que la dirección también indica el sentido.
§                    Vectores colineales: los vectores que comparten una misma recta de acción.
§                    vectores paralelos: si sobre un cuerpo rígido actúan dos o más fuerzas cuyas líneas de acción son paralelas.
§                    Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).

Componentes de un vector

Componentes del vector.
Un vector en el espacio se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.
En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:

o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será

Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:

Con esta notación, los vectores cartesianos quedan expresados en la forma:

Representación gráfica de los vectores

Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello veamos las notas:
§                    Llamaremos vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremo).
§                    La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.
§                    El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.
§                    Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo(final) del primer vector con el extremo que no lo tiene(origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.
Examinemos cada uno de los casos que aparecen en la definición:
La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
3) Decir que existe un vector 0 tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.
4) Decir que u+(-u)=0, es exigir la existencia de un elemento, -u, que sumado a u simplifique en un vector cero.
La definición producto por escalar  produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.
§         Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.
Por un lado la representación del producto en el caso  modifica, visualmente, la longitud de la imagen del vector, quedando ambos siempre superpuestos; por otro lado las representaciones en el caso  además de modificar la longitud, también agrega rotaciones, para facilitarlas visualmente considérense centradas en el origen del vector, siendo estas modificaciones un poco más expresivas, visualmente, pero no más fáciles que en el caso real:
a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.
b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.
c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.
d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.
Para el caso real se han de eliminar las rotaciones de los ejemplos anteriores.

Operaciones con vectores

Suma de vectores

Para sumar dos vectores libres (vector y vector) se escogen como representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro vector.

Método del paralelogramo

http://upload.wikimedia.org/wikipedia/commons/thumb/0/01/Vectoren_optellen.svg/250px-Vectoren_optellen.svg.pngMétodo del paralelogramo.
Este método permite solamente sumar vectores de dos en dos. Consiste en disponer gráficamente los dos vectores de manera que los orígenes de ambos coincidan en un punto, trazando rectas paralelas a cada uno de los vectores, en el extremo del otro y de igual longitud, formando así un paralelogramo (ver gráfico). El vector resultado de la suma es la diagonal de dicho paralelogramo que parte del origen común de ambos vectores.

Método del triángulo o método poligonal

Método del triángulo.
Consiste en disponer gráficamente un vector a continuación de otro, ordenadamente: el origen de cada uno de los vectores coincidirá con el extremo del siguiente. El vector resultante es aquel cuyo origen coincide con el del primer vector y termina en el extremo del último.

Método analítico para la suma y diferencia de vectores

Dados dos vectores libres,


El resultado de su suma o de su diferencia se expresa en la forma

y ordenando las componentes,

Con la notación matricial sería

Conocidos los módulos de dos vectores dados,  y , así como el ángulo  que forman entre sí, el módulo de  es:
La deducción de esta expresión puede consultarse en deducción del módulo de la suma.

Producto de un vector por un escalar

Producto por un escalar.
El producto de un vector por un escalar es otro vector cuyo módulo es el producto del escalar por el módulo del vector, cuya dirección es igual a la del vector, y cuyo sentido es contrario a este si el escalar es negativo.
Partiendo de la representación gráfica del vector, sobre la misma línea de su dirección tomamos tantas veces el módulo de vector como indica el escalar.
Sean  un escalar y  un vector, el producto de  por  se representa  y se realiza multiplicando cada una de las componentes del vector por el escalar; esto es,

Con la notación matricial sería


Derivada ordinaria de un vector

Dado un vector que es función de una variable independiente

Calculamos la derivada ordinaria del vector con respecto de la variable t, calculando la derivada de cada una de sus componentes como si de escalares se tratara:

teniendo en cuenta que los vectores unitarios son constantes en módulo y dirección.
Con notación matricial sería


Veamos un ejemplo de derivación de un vector, partiendo de una función vectorial:

Esta función representa una curva helicoidal alrededor del eje z, de radio unidad, como se ilustra en la figura. Podemos imaginar que esta curva es la trayectoria de una partícula y la función  representa el vector posición en función del tiempo t. Derivando tendremos:

Realizando la derivada:

La derivada del vector posición respecto al tiempo es la velocidad, así que esta segunda función determina el vector velocidad de la partícula en función del tiempo, podemos escribir:

Este vector velocidad es un vector tangente a la trayectoria en el punto ocupado por la partícula en cada instante. El sentido es hacia los valores crecientes de los valores escalares.4 Si derivásemos de nuevo obtendríamos el vector aceleración.

Derivada covariante de un vector

Cuando en lugar de emplear una "base fija" en todo el dominio de un vector se usan "bases móviles" como cuando se emplean coordenadas curvilíneas la variación total de un vector dependiente del tiempo depende no sólo de la variación de componentes como en el caso de la derivada ordinaria sino también de la variación de la orientación de la base. La variación total se llama derivada covariante:

Cuando se emplea una base fija (coordenadas cartesianas) la derivada covariante coincide con la derivada ordinaria. Por ejemplo cuando se estudia el movimiento de una partícula desde un sistema de referencia no inercial en rotación, las aceleraciones de Coriolis y centrípeta se deben a los factores que contienen .

Ángulo entre dos vectores

El ángulo determinado por las direcciones de dos vectores  y  viene dado por:

Descomposiciones de un vector

Dado un vector  y una dirección de referencia dada por un vector unitario  se puede descomponer el primer vector en una componente paralela y otra componente perpendicular a la dirección de referencia:


En física esta descomposición se usa en diferentes contextos como descomponer la aceleración en una componente paralela a la velocidad y otra componente perpendicular a la misma. También el tensión mecánica en un punto sobre un plano puede descomponerse en una componente normal al plano y otra paralela.
También dado un campo vectorial  definido sobre un dominio de Lipschitz, acotado, simplemente conexo y de cuadrado integrable  admite la llamada descomposición de Helmholtz como suma de un campo conservativo y un campo solenoidal
:

Cambio de base vectorial

En matemáticas las rotaciones son transformaciones lineales que conservan las normas en espacios vectoriales en los que se ha definido una operación de producto interior. La matriz de transformación tiene la propiedad de ser una matriz unitaria, es decir, esortogonal y su determinante es 1. Sea un vector  expresado en una sistema de coordenadas cartesianas (x, y, z) con una base vectorial asociada definida por los versores ; esto es,

Ahora, supongamos que giramos el sistema de ejes coordenados, manteniendo fijo el origen del mismo, de modo que obtengamos un nuevo triedro ortogonal de ejes (x′, y′, z′), con una base vectorial  asociada definida por los versores . Las componentes del vector  en esta nueva base vectorial serán:

La operación de rotación de la base vectorial siempre puede expresarse como la acción de un operador lineal (representado por una matriz) actuando sobre el vector (multiplicando al vector):

que es la matriz de transformación para el cambio de base vectorial.
Ejemplo
En el caso simple en el que el giro tenga magnitud  alrededor del eje z, tendremos la transformación:

Al hacer la aplicación del operador, es decir, al multiplicar la matriz por el vector, obtendremos la expresión del vector  en la nueva base vectorial: 
siendo las componentes del vector en la nueva base vectorial.

Requerimientos físicos de las magnitudes vectoriales

No cualquier n-tupla de funciones o números reales constituye un vector físico. Para que una n-tupla represente un vector físico, los valores numéricos de las componentes del mismo medidos por diferentes observadores deben transformarse de acuerdo con ciertas relaciones fijas.
En mecánica newtoniana generalmente se utilizan vectores genuinos, llamados a veces vectores polares, junto con pseudovectores, llamados vectores axiales que realmente representan el dual de Hodge de magnitudes tensoriales antisimétricas. El momento angular, el campo magnético y todas las magnitudes que en cuya definición interviene el producto vectorial son en realidad pseudovectores o vectores axiales.
En teoría especial de la relatividad, sólo los vectores tetradimensionales cuyas medidas tomadas por diferentes observadores pueden ser relacionadas mediante alguna transformación de Lorentzconstituyen magnitudes vectoriales. Así las componentes de dos magnitudes vectoriales medidas por dos observadores  y  deben relacionarse de acuerdo con la siguiente relación:
Donde  son las componentes de la matriz que da la transformación de Lorentz. Magnitudes como el momento angular, el campo eléctrico o el campo magnético o el de hecho en teoría de la relatividad no son magnitudes vectoriales sino tensoriales.

Movimiento (física)

El movimiento es un cambio de posición respecto del tiempo.
En mecánica, el movimiento es un cambio físico que se define como todo cambio de posición en el espacio
La descripción y estudio del movimiento de un cuerpo exige determinar su posición en el espacio en función del tiempo. Para ello es necesario un sistema de referencia o referencial.

Introducción

La Mecánica comprende el estudio de las máquinas (Polea simple fija).
Un sistema físico real se caracteriza por al menos tres propiedades importantes:
1.     Tener una ubicación en el espacio-tiempo.
2.     Tener un estado físico definido sujeto a evolución temporal.
3.     Poderle asociar una magnitud física llamada energía.

El movimiento se refiere al cambio de ubicación en el espacio a lo largo del tiempo, tal como es medido por un observador físico. Un poco más generalmente el cambio de ubicación puede verse influido por las propiedades internas de un cuerpo o sistema físico, o incluso el estudio del movimiento en toda su generalidad lleva a considerar el cambio de dicho estado físico.
Las descripicón del movimiento de los cuerpos físicos se denomina cinemática (que sólo se ocuparía de las propiedades 1 y 2) anteriores. Esta disciplina pretende describir el modo en que un determinado cuerpo se mueve y qué propiedades tiene dicho movimiento. La física clásica nació estudiando la cinemática de cuerpos rígidos.
Posteriormene el estudio de las causas que producen el movimiento y las relaciones cuantitativas entre los agentes que causan el movimiento y el movimiento observado llevó al desarrollo de la mecánica (Griego Μηχανική y de latín mechanica o 'arte de construir máquinas') que es la rama de la física que estudia y analiza el movimiento y reposo de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas y agentes que pueden alterar el estado de movimiento. La mecánica teórica fue durante los siglos XVII, XVIII y principios del siglo XIX, la disciplina de la física que alcanzó mayor abstracción matemática y fue una fuente de mejora del conocimiento científico del mundo. La mecánica aplicada está usualmente relacionada con la ingeniería. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como éstas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.
Durante el siglo XX la aparición nuevos hechos físicos, tanto la consideración de cuerpos físicos moviendose a velocidades cercanas a la velocidad de la luz como el movimiento de las partículas subatómicas, llevaron a la formulación de teorías más abstractas como la mecánica relativista y la mecánica cuántica que seguían interesándose por la evolución en el tiempo de los sistemas físicos, aunque de una manera más abstracta y general de lo había hecho la mecánica clásica, cuyo objetivo era básicamente cuantificar el cambio de posición en el espacio de las partículas a lo largo del tiempo y los agentes responsables de dichos cambios.

Mecánica clásica

La mecánica clásica es una formulación de la mecánica para describir mediante leyes el comportamiento de cuerpos físicos macroscópicos en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.
Existen varias formulaciones diferentes, de la mecánica clásica para describir un mismo fenómeno natural, que independientemente de los aspectos formales y metodológicos que utilizan llegan a la misma conclusión.
§                    La mecánica vectorial, deviene directamente de las leyes de Newton, por eso también se le conoce con el gentilicio de newtoniana. Es aplicable a cuerpos que se mueven en relación a un observador a velocidades pequeñas comparadas con la de la luz. Fue construida en un principio para una sola partícula moviéndose en un campo gravitatorio. Se basa en el tratamiento de dos magnitudes vectoriales bajo una relación causal: la fuerza y la acción de la fuerza, medida por la variación del momentum (cantidad de movimiento). El análisis y síntesis de fuerzas y momentos constituye el método básico de la mecánica vectorial. Requiere del uso privilegiado de sistemas de referencia inercial.
§                    La mecánica analítica (analítica en el sentido matemático de la palabra y no filosófico). Sus métodos son poderosos y trascienden de la Mecánica a otros campos de la física. Se puede encontrar el germen de la mecánica analítica en la obra de Leibniz que propone para solucionar los problemas mecánicos otras magnitudes básicas (menos oscuras según Leibniz que la fuerza y el momento de Newton), pero ahora escalares, que son: la energía cinética y el trabajo. Estas magnitudes están relacionadas de forma diferencial. La característica esencial es que, en la formulación, se toman como fundamentos primeros principios generales (diferenciales e integrales), y que a partir de estos principios se obtengan analíticamente las ecuaciones de movimiento.
En mecánica newtoniana el movimiento de una partícula en el espacio tridimensional se representa por una función vectorial:

El conjunto imagen  se denomina trayectoria y se obtiene integrando la ecuación diferencial anterior con las condiciones de contorno adecuadas. Dado que la ecuación diferencial puede ser complicada a veces se buscan integrales de movimiento que permitan encontrar la trayectoria más fácilmente. Para un sistema de n partículas libres que ejercen acciones a distancia instáneas la idea anterior se generaliza:

Si existen ligaduras en el movimiento puede resultas más sencillo y económico pasar a un sistema de coordenadas generalizadas y trabajar con una formulación abstracta típica de la mecánica analítica.

Mecánica relativista

Para describir la posición de una partícula material la mecánica relativista hace uso de un sistema de cuatro coordenadas definidas sobre un espacio-tiempo de cuatrodimensiones. Además las acciones a distancia instantáneas están excluidas ya que al propagarse más rápido que la velocidad de la luz dan lugar a contracciones en el principio de causalidad. Por lo que un sistema de partículas puntuales en interacción debe ser descrito con la ayuda de "campos retardados", es decir, que no actúan de manera instatáneamente, cuya variación debe determinarse como propagación a partir de la posición de la partícula. Esto complica razonablemente el número de ecuaciones necesarias para describir un conjunto de partículas en interacción.
Otra dificultad añadida es que no existe un tiempo universal para todos los observadores, por lo que relacionar las medidas de diferentes observadores en movimiento relativo es ligeramente más complejo que en la mecánica clásica. Una manera conveniente es definir el intervalo invariante relativista y parametrizar las trayectorias en el espacio-tiempo en función de dicho parámetro. La descripción campos de fuerzas o fluidos requiere definir ciertas magnitudes tensoriales sobre el espacio vectorial tangente al espacio-tiempo.

Mecánica cuántica

La mecánica cuántica1 2 es una de las ramas principales de la física, y uno de los más grandes avances del siglo XX para el conocimiento humano, que explica el comportamiento de la materiay de la energía. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores que se usan más que nada en la computación. La mecánica cuántica describe en su visión más ortodoxa, cómo cualquier sistema físico, y por lo tanto todo el universo, existe en una diversa y variada multiplicidad de estados, los cuales habiendo sido organizados matemáticamente por los físicos, son denominados autoestados de vector y valor propio. De esta forma la mecánica cuántica explica y revela la existencia del átomo y los misterios de la estructura atómica tal cual hoy son entendidos; lo que por otra parte, la física clásica, y más propiamente todavía la mecánica clásica, no podía explicar debidamente los fenómenos actualmente observados por los científicos.
De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la relatividad en su formalismo, tan sólo como añadido mediante teoría de perturbaciones.3 La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar)4 y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria.
La mecánica cuántica es la base de los estudios del átomo, los núcleos y las partículas elementales (siendo ya necesario el tratamiento relativista), pero también en teoría de la información,criptografía y química.

No hay comentarios:

Publicar un comentario